From spin- to charge-modulations in BaFe$_2$(As$_{1-x}$P$_x$)$_2$

K. Komędra1, A. Blachowski1, J. Żukowski2, T. J. Sato3

1Mössbauer Spectroscopy Laboratory, Institute of Physics, Pedagogical University, Kraków, Poland
2Academic Center for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland
3Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan

Introduction

The BaFe$_2$(As$_{1-x}$P$_x$)$_2$ compounds represent ‘122’ iron-pnictide superconductors with superconductivity induced by isovalent chemical doping of the BaFe$_2$As$_2$ parent compound (e.g. the partial substitution of As by P) with simultaneous suppression of the spin-density wave SDW magnetic order, see Fig. 1 [1, 2]. The samples with $x = 0$ (parent), $x = 0.10$ (under-doped), $x = 0.31$, 0.33, 0.53 (superconductors with $T_c = 27.3$ K, 27.6 K, 13.9 K, respectively) and $x = 0.70$, 0.77 (over-doped) have been studied by the 57Fe Mössbauer spectroscopy versus temperature. Representative spectra are shown at 4.2 K, 80 K and 300 K are shown in Fig. 2. Decreasing value of the average spectral shift $<\Delta\beta>$ with increasing substitution level indicates that phosphorus atoms increase the electron charge density on the Fe nuclei in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ system.

Results and discussion

$x = 0.10$ (under-doped, $T_{SDW} = 106$ K)

The BaFe$_2$(As$_{0.9}$P$_{0.1}$)$_2$ sample presents strongly perturbed SDW magnetic order with $T_{SDW} = 106$ K received on the basis of the anomaly in the electrical resistivity [3]. The average magnetic field of the SDW $<\beta>$ = 4.14 T (at 4.2 K) is significantly reduced relative to the value for parent compound BaFe$_2$As$_2$ with $<\beta>$ = 5.30 T. The residual magnetic order is observed for the nematic phase in the temperature range up to 135 K, about 30 K higher than coherent SDW order and orthorhombic distortion, see Fig. 3 and Fig. 4. The nematic phase seems to be a region of incoherent spin density wavelets typical for a critical region. Nematic phase is characterized by electronic anisotropy in the crystallographic a-b plane with broken rotational symmetry, but preserved translational symmetry (tetragonal structure) [1].

$x = 0.31$ (superconductor, $T_c = 27.3$ K)

The BaFe$_2$(As$_{0.7}$P$_{0.3}$)$_2$ sample presents traces of the magnetic order below 50 K, so within the superconducting state, see Fig. 4 and Fig. 5. The coexistence of magnetism and superconductivity is due to vicinity of the quantum critical point for this composition. No change in the average magnetic field $<\beta>$ at the critical temperature is observed. Spectra above 50 K are described by the distribution of the electric field gradient.

$x = 0.33$ and $x = 0.53$ (superconductors, $T_c = 27.6$ K and 13.9 K, respectively)

The BaFe$_2$(As$_{0.7}$P$_{0.3}$)$_2$ and BaFe$_2$(As$_{0.5}$P$_{0.5}$)$_2$ sample display distribution of the electric field gradient (EFG) in the whole temperature range. A distribution is caused by perturbation of the iron surrounding in the Fe-As layer by the phosphorus atoms. It was found that the average quadrupole splitting $<\Delta\beta>$ varies at the critical temperature for optimally doped superconductor probably due to the superconducting gap opening and subsequent formation of the Cooper pairs, see Fig. 5 and Fig. 6. The similar effect was observed previously for others iron-based superconductors [4, 5], wherein the perturbation of the spatial modulization of the EFG being a consequence of the incommensurate modulization of the electron charge density on the Fe nuclei. No change in the charge modulations is observed for the over-doped samples.

Acknowledgment

This work was supported by the National Science Center of Poland, 2016/29/N/ST3/00705.

References